

Form:	Form Number	EXC-01-02-02A		
Corress Stillshow	Issue Number and Date	2/3/24/2022/2963		
Course Synabus	Issue Number and Date	05/12/2022		
	Number and Date of Revision or Modification			
	Deans Council Approval Decision Number			
	The Date of the Deans Council Approval Decision	23/01/2023		
	Number of Pages	06		

1.	Course Title	X-ray Crystallography and Structure Determination				
2.	Course Number	0303722				
3	Credit Hours (Theory, Practical)	(3,0)				
5.	Contact Hours (Theory, Practical)	(3,0)				
4.	Prerequisites/ Corequisites	-				
5.	Program Title	Master in Chemistry				
6.	Program Code	0303				
7.	School/ Center	Science				
8.	Department	Chemistry				
9.	Course Level	Master (including PhD students)				
10.	Year of Study and Semester (s)	2 nd semester 2023/2024				
11	Other Department(s) Involved in	-				
11.	Teaching the Course					
12.	Main Learning Language	English				
13.	Learning Types	x Face to face learning \Box Blended \Box Fully online				
14.	Online Platforms(s)	\Box Moodle x Microsoft Teams				
15.	Issuing Date	3-11-2023				
16.	Revision Date	9-11-2024				

17. Course Coordinator:

Name: Prof. Dr. Murad A. AlDamen	Contact hours: 8:00-10:00 Mon. Wed.
Office number: Chemistry 2 nd floor	Phone number: N/A
Email: maldamen@ju.edu.jo	

18. Other Instructors:

19. Course Description:

Course Description

This course covers the study of X-ray diffraction and its relationship with crystals to determine the structural composition of crystalline compounds. It focuses on essential topics such as crystal lattices, crystallographic systems, space groups, and deriving different positions within the crystal structure. The course also explores the concept of the reciprocal lattice, techniques for collecting boundary information and analyzing it, as well as key structural elements and Fourier transforms. It delves into phase problems, Patterson methods, and the heavy-atom method, with an emphasis on innovative approaches to solving phase issues.

The practical component of the course involves hands-on training using advanced techniques and modern software. By the end of the practical sessions, students will solve the crystal structure of a single-crystal compound, providing them with advanced practical experience in crystallography and X-ray analysis for single crystals.

20. Program Student Outcomes (SO's): (To be used in designing the matrix linking the intended learning outcomes of the course with the intended learning outcomes of the program)

SO1. Demonstrate comprehensive knowledge and understanding of chemistry topics, achieving expertise in foundational research principles.

SO2. Develop independent research skills to solve complex problems, focusing on analytical and critical thinking.

SO3. Improve communication of scientific knowledge through structured reports, presentations, and discussions.

SO4. Engage in activities that enhance practical scientific skills and improve professional expertise.

SO5. Maintain ethical standards in research.

21. Course Intended Learning Outcomes (CLO's): (Upon completion of the course, the student will be able to achieve the following intended learning outcomes)

1. Understand the fundamental concepts of solid-state chemistry, including crystal systems, geometry, and space groups

2. Understand the fundamental concepts of X-ray techniques, especially single Xray Crystallography.

3. Apply X-ray diffraction techniques to analyze crystal structures and determine atomic positions

4. Interpret and communicate scientific data from X-ray diffraction experiments

5. Adhere to ethical standards in conducting practical experiments and reporting research findings

The University of Jordan

Course	The learning levels to be achieved								
CLOs	Remembering	Understanding	Applying	Analysing	evaluating	Creating			
1		\checkmark							
2		\checkmark							
3			\checkmark						
4				\checkmark	\checkmark	\checkmark			
5			\checkmark	\checkmark	\checkmark	\checkmark			

22. The matrix linking the intended learning outcomes of the course with the intended learning outcomes of the program:

Program SO's	SO (1)	SO (2)	SO (3)	SO (4)	SO (5)
Course CLO's					
CLO 1	\checkmark				
CLO 2	\checkmark				
CLO 3		\checkmark		\checkmark	
CLO 4			\checkmark		
CLO 5					\checkmark

23. Topic Outline and Schedule:

Week	Lecture	Topic	CLO/s Linked to the Topic	Learning Types Face to Face (FF) Blended (BL)	Platform Used	Synchronous (S)	Evaluation Methods	Learning Resources*
	1.1	Introduction to solid state	1,2	FF	In class	S	MID, Final	
1	1.2	Introduction to solid state	1,2	FF	In class	S	MID, Final	
	1.3	Introduction to solid state	1,2	FF	In class	S	MID, Final	
2	2.1	X-ray diffraction	1,2	FF	In class	S	MID, Final	
	2.2	X-ray diffraction	1,2	FF	In class	S	MID, Final	

The University of Jordan

الجامعة الاردنية

	2.3	X-ray diffraction	1,2	FF	In class	S	MID, Final	
3	3.1	Crystal Systems and Geometry	1,2	FF	In class	S	MID, Final	
	3.2	Crystal Systems and Geometry	1,2	FF	In class	S	MID, Final	
	3.3	Crystal Systems and Geometry	1,2	FF	In class	S	MID, Final	
	4.1	Space Groups and Equivalent Positions	1,2	FF	In class	S	MID, Final	
4	4.2	Space Groups and Equivalent Positions	1,2	FF	In class	S	MID, Final	
	4.3	Space Groups and Equivalent Positions	1,2	FF	In class	S	MID, Final	
	5.1	Space Groups and Equivalent Positions	1,2	FF	In class	S	MID, Final	
5	5.2	Space Groups and Equivalent Positions	1,2	FF	In class	S	MID, Final	
	5.3	Space Groups and Equivalent Positions	1,2	FF	In class	S	MID, Final	
	6.1	Diffraction and crystal structures	1,2	FF	In class	S	Quiz, Final	
6	6.2	Diffraction and crystal structures	1,2	FF	In class	S	Quiz, Final	
	6.3	Diffraction and crystal structures	1,2	FF	In class	S	Quiz, Final	
	7.1	Diffraction and crystal structures	1,2	FF	In class	S	Quiz, Final	
7	7.2	Diffraction and crystal structures	1,2	FF	In class	S	Quiz, Final	
	7.3	Diffraction and crystal structures	1,2	FF	In class	S	Quiz, Final	
	8.1	Diffraction and crystal structures	1,2	FF	In class	S	Quiz, Final	
8	8.2	Diffraction and crystal structures	1,2	FF	In class	S	Quiz, Final	
	8.3	Diffraction and crystal structures	1,2	FF	In class	S	Quiz, Final	
	9.1	Determination of Atomic Positions	3	FF	In class	S	Quiz, Final	
9	9.2	Determination of Atomic Positions	3	FF	In class	S	Quiz, Final	
	9.3	Determination of Atomic Positions	3	FF	In class	S	Quiz, Final	
	10.1	Determination of Atomic Positions	3	FF	In class	S	Quiz, Final	
10	10.2	Determination of Atomic Positions	3	FF	In class	S	Quiz, Final	
10	10.3	Determination of Atomic Positions	3	FF	In class	S	Quiz, Final	
	11.1	Determination of Atomic Positions	3	FF	In class	S	Quiz, Final	
11	11.2	Determination of Atomic Positions	3	FF	In class	S	Quiz, Final	
	11.3	Determination of Atomic Positions	3	FF	In class	S	Quiz, Final	
	12.1	Practical Work	4,5	FF	In class	S	Practical	
12	12.2	Practical Work	4,5	FF	In class	S	Practical	
	12.3	Practical Work	4,5	FF	In class	S	Practical	
	13.1	Practical Work	4,5	FF	In class	S	Practical	
13	13.2	Practical Work	4,5	FF	In class	S	Practical	
	13.3	Practical Work	4,5	FF	In class	S	Practical	
	14.1	Practical Work	4,5	FF	In class	S	Practical	
14	14.2	Practical Work	4,5	FF	In class	S	Practical	
	14.3	Practical Work	4,5	FF	In class	S	Practical	
	15.1	Practical Work	4,5	FF	In class	S	Practical	
15	15.2	Practical Work	4,5	FF	In class	S	Practical	
	15.3	Practical Work	4,5	FF	In class	S	Practical	

* different resources mentioned in the reference section

24. Evaluation Methods:

Opportunities to demonstrate the achievement of the CLOs are provided through the following assessment methods and requirements:

Evaluation Activity	Mark	Topic(s)	CLO/s Linked to the Evaluation activity	Period (Week)	Platform
Mid	30	As per Sec. 21 above	1,2,3	Week 8	
Quiz	15	As per Sec. 21 above	1,2,3	Week 12	
Practical	15	As per Sec. 21 above	4,5	After week 12	
Final Exam	40	As per Sec. 21 above	1,2,3	TBD	

25. Course Requirements:

International Tables for Crystallography: ISBN: 978-0-470-68575-4, <u>https://doi.org/10.1107/97809553602060000001</u> https://www.olexsys.org/olex2/ package

26. Course Policies:

- A- Attendance policies:
- B- Absences from exams and submitting assignments on time:
- C- Health and safety procedures:
- D- Honesty policy regarding cheating, plagiarism, misbehavior:
- E- Grading policy:
- F- Available university services that support achievement in the course:

27. References:

- A- Required book (s), assigned reading and audio-visuals:
- 1. Introduction to Crystallography, by Donald E. Sands.
- 2. X-ray Structure Determination, by George H. Stout and Lyle H. Jensen.
- 3. Crystallography and its applications, by L. S. D. Glasser

Recommended books, materials, and media:

The International Tables for X-ray Crystallography. Other reference textbooks by Bunn, Buerger, Glasser, Wheatley, and others in the field may be found in the library

28. Additional information:

Name of the Instructor or the Course Coordinator:	Signature:	Date:
Dr. Murad AlDamen, Prof.		
The Head of Graduate Studies Committee/ Department Chemistry	Signature:	Date:
Dr. Murad AlDamen, Prof.		
The Head of Department of Chemistry Dr. Murad AlDamen, Prof.	Signature:	Date:
Vice Dean for Graduate Studies and Scientific Research / School of Science	Signature:	Date:
Dr. Kamal Sweidan, Prof.		•••••
The Dean of School of Science Dr. Mahmoud I. Jaghoub, Prof.	Signature:	Date: